Ultrafast Dissociation Dynamics of Ketones at 195 nm Q. Zhong, D. A. Steinhurst, A. P. Baronavski, and J. C. Owrutsky Naval Research Laboratory, Washington, DC 20375 # INTRODUCTION Photodissociation dynamics of ketones Multiple dissociation reactions <u>Issues:</u> What are the dissociation mechanisms? Concerted or **stepwise** dissociation? Energy partitioning among products E_{int} Dissociation rates k_1 and k_2 Is dissociation statistical? (precludes control) How do these depend on the details of the specific system? precursor, excitation wavelength, type of state excited Potential Energy Surfaces for Ketone Photodissociation and **Photoionization Detection** ## Background Acetone: "Benchmark" multiple dissociation system 195 nm excitation to 3s Rydberg state^{1,2} Primary dissociation: predissociates via ISC to {S₁, T₁} state (4.7 ps)^{3,4} Secondary dissociation: unimolecular dissociation of acetyl intermediate nonstatistical based on RRKM comparison with E_{inf} Acetyl dissociation - depends on precursor statistical: acetyl cyanide and acetic acid⁵ (E_{int} well determined⁶) nonstatistical: acetone (3s, near 4s)^{3,7}, acetyl chloride⁸ #### Current investigations Photodissociation dynamics for methyl-substitution on acetone Primary dissociation times measured previously 9 2-9 ps - similar to acetone Determine secondary dissociation times Tunable UV probe with OPA: circumvent dissociative ionization limitation Little product energy distribution information: hampers clear assessment of secondary dissociation mechanism Infer primary partitioning from secondary dissociation rate on methyl-substitution dependence Is secondary dissociation of acetyl statistical? # **ABSTRACT** The photodissociation dynamics of the 3s Rydberg state of three ketones (CH₃CO-R, R = C_2H_5 , C_3H_7 , and iso- C_4H_9) and the ensuing dissociation of the nascent acetyl radical following 195 nm excitation were investigated by ultrafast photoionization spectroscopy. The 3s state lifetimes of these ketones are similar (2.5-2.9 ps), though lifetimes of the acetyl radical are 8.6(2) ps for CH₃CO-C₂H₅. 15(3) ps for CH₃CO-C₃H₇, and 23(5) ps for CH₃CO-(iso-C₄H₉), which suggests that for larger R's more vibrational degrees of freedom compete for the excess energy with less energy partitioned into the internal energy of the acetyl radical. ## DATA ANALYSIS Reaction paths of excited ketones: k_1 : primary rate \rightarrow CH₃CO-R(3s) \rightarrow CH₃CO-R⁺ k_2 : secondary rate DI: dissociative ionization NI: neutral ionization. $CH_3CO + R \cdot \xrightarrow{\text{probe}} CH_3CO^+ + R \cdot$ f_{DI} : fraction of the acetyl ion due to dissociative $CH_3 \cdot + CO + R \cdot$ f_{undis} : fraction of the acetyl ion from non-dissociating Fit to data: neutral acetyl *N*₂: Normalization constant $[ketone^+] = N_1 e^{-k_1 t}$ [acetyl] $N_2\{f_{DI}e^{k_1t} (1 f_{DI})[(1 f_{undis})\frac{\kappa_1}{k}(e^{k_1t} e^{k_2t}) f_{undis}(1 e^{k_1t})]\}$ # **TIME-RESOLVED** PHOTOIONIZATION DECAYS # RESULTS SUMMARY Lifetimes of ketones and acetyl fragments and model predictions of E_{int} of acetyl radicals | CH ₃ COR | lifetimes (ps) ^a | | E_{avl}^{b} | E _{int} (kcal/mol) | | | |---------------------------------------|-----------------------------|------------------------|--|------------------------------|------------------------------|------------------------------| | R | ketone | acetyl | | $RRKM^{c}$ | Imp | Stat | | CH_3 C_2H_5 C_3H_7 $iso-C_4H_9$ | 4.9
2.9
2.7
2.5 | 4.3
8.6
15
23 | 62.1(1.2)
64.0(1.4)
63.6(1.4)
63.1(1.5) | 24.2
22.6
21.6
21.1 | 22.4
23.0
22.9
22.7 | 31.1
23.3
18.2
14.8 | a. Uncertainty for parent: ~10%, uncertainty for acetyl: ~20% b. $E_{avl} = h - D_0$ $D_o = H(CH_3CO) + H(R) - H(CH_3COR)$ $H(CH_3CO)$, H(R), $H(CH_3COR)$ from ref. 10 c. Barrier height = 17 kcal/mol vibrational frequencies of the acetyl ground state and the transition state from ref. 11 Coincidental? E_{int} (RRKM) = 75% E^{imp} + 25% E^{stat} # LIMITING CASE MODELS FOR ENERGY PARTITIONING FOLLOWING PRIMARY DISSOCIATION Impulsive Model¹² - Assumes ketones break apart due to the excitation of the C-C stretching mode, prior to energy randomization - Product energy distribution determined by forces from sudden recoil between the two dissociating C atoms $E(A) = E_{avl} x (C1,C2)/m_{C1} = 0.5E_{avl}$ $E_{int}(A) = E(A) \times (1-m_{c1}/m_{A})$ $E_{int}(CH_3CO) = 36\% E_{avl}$ #### Statistical Model¹³ - Assumes that IVR occurs much faster than primary dissociation - The fraction of E_{avl} going into E_{int} of the acetyl radical equals the ratio between the number of vibrational modes in acetyl to the total number of modes in parent molecule # SUMMARY - ➤ Single photon excitation to 3s Rydberg state - primary decay times : ~ 2.5-2.9 ps similar to the time scale of acetone - Secondary dissociation of acetyl - tunable UV probe: reduce dissociative ionization - decay times increase as R gets larger - little undissociated acetyl observed - ➤ Interpretation by comparison with models: - no independent information on product energy distribution: E_{int} (acetyl) not known - knowledge of primary and secondary decay rates not enough to establish the dissociation mechanism - compare observed rate with model predictions - E_{int} from limiting case model prediction: impulsive/statistical E_{int} inferred from RRKM with observed decay rate - impulsive model agrees better with RRKM inferred E_{int} - statistical model predicts the trend - fixed fraction of impulsive and statistical reservoirs agree with RRKM inferred E_{int} - Complementary information from product energy analysis and theoretical calculations needed to obtain a more comprehensive picture ### References - 1. G. A. Gaines et al, J. Phys. Chem. 92 (1988) 2762; D. J. Donaldson et al, J. Phys. Chem. 92 (1988) 2766. - 2. H. Zukerman et al, J. Phys. Chem. 92 (1988) 4835. - 3. J. C. Owrutsky et al, J. Chem. Phys. 108 (1998) 6652; - ibid. 110 (1999) 11206. 4. S. W. North et al, J. Chem. Phys. 102 (1995) 4447. - 5. J. C. Owrutsky et al, J. Chem. Phys. 111 (1999) 7329. - 6. S. W. North et al, J. Phys. Chem. A 101 (1997) 9224; - R. J. Horwitz et al, J. Phys. Chem. 101 (1997) 1231; - S. S. Hunnicutt et al, J. Phys. Chem. 95 (1991) 562; - D. R. Peterman et al, Chem. Phys. Lett. 236 (1995) 564. - 7. S. K. Kim et al, J. Chem. Phys. 103 (1995) 477; - S. K. Kim et al, Chem. Phys. Lett. 250 (1996) 279. - 8. T. Shibata et al, J. Phys. Chem. A 102 (1998) 3643. - 9. A. P. Baronavski et al, Chem. Phys. Lett. 333 (2001) 36. - 10. NIST Chemistry WebBook: http://webbook.nist.gov. - 11. S. Deshmukh et al, J. Phys. Chem. 98 (1994) 12535. - 12. K. A. Trentelman et al, J. Chem. Phys. 91 (1989) 7498. - 13. R. J. Campbell et al, J. Am. Chem. Soc. 89 (1967) 5103. Please check our paper for more details for this presentation: Chem. Phys. Lett. 370 (2003) 609. #### **ACKNOWLEDGEMENTS** This work was supported by the office of Naval Research at the Naval Research Laboratory. Q.Z. and D.A.S. acknowledges the Naval Research Laboratory National Research Council Research Associateship program.